Optimizing Photovoltaic Productivity for Private Homeowner Installations

Y. Osovizky I. Osovizky M. Ghelman and A. Osovizky 12/11/2021

Outline

- Green Energy
- Photovoltaic panels
- Goal
- Method
- Results
- Discussion

Green Energy

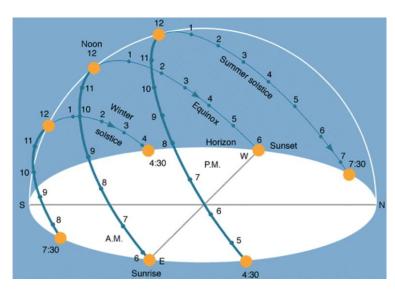
- Energy generated from natural resources.
- Global efforts are aiming to increase electricity production from green energy.
- Efforts aim to reduce greenhouse gas emissions by 45% over the next decade, and to net zero emissions by 2050 [1].
- Israel's Ministry of energy goal is to produce 30% of the countries electricity demand from green energy by 2030 with an emphasis on solar energy [2].
 - [1] https://www.gov.il/en/departments/general/renewable_energy
 - [2] https://www.un.org/sustainabledevelopment/climate-change/

Homeowner installations

- The main resource for green energy in Israel is solar energy based on photovoltaic panels [1].
- The potential in Israel is to produce 46% of the electricity demand just by PVP systems that could be installed on rooftops [2].
- About 80% of those rooftops are residential buildings.

[1]https://ourworldindata.org/renewable-energy

[2]https://www.gov.il/BlobFolder/reports/potential_for_solar_production_on_existing_structures_jan_2020/he/climate_change_and_energy_efficiency_potential_for_solar_production_on_existing_structures_jan_2020.pdf


Photovoltaic panel (PVP) - Technology

- Photovoltaic panel converts light into electricity using solar cells [1].
- The solar cell absorbs the light and generates a charge, hence the clarity of the panel is mandatory.
- Accumulation of dust has a major effect on the PVP's efficiency and the electricity yield.

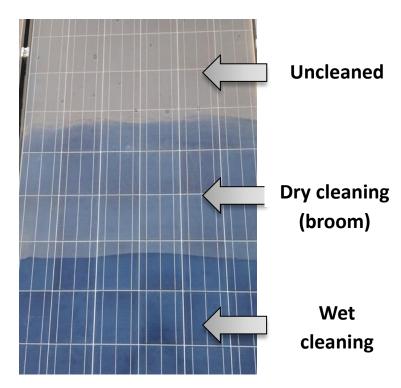
[1] https://www.electrical4u.com/working-principle-of-photovoltaic-cell-or-solar-cell/

Optimal PV panel Installation factors

- Orientation panels should face the equator:
 - north hemisphere (Israel) facing south
- <u>Inclination</u> Perpendicular to the sun
- Seasonal dependent[1]:
 - > During the winter the sun is low
 - > During the summer the sun is high

- In Israel, the optimal angle (fixed through the year) is about 26 degrees [2].
 - [1] https://il.dsnsolar.com/info/how-to-figure-the-correct-angle-for-solar-pane-37645512.html
 - [2] https://www.engis.co.il/%d7%9e%d7%a2%d7%a8%d7%9b%d7%95%d7%aa -%d7%a1%d7%95%d7%9c%d7%90%d7%a8%d7%99%d7%95%d7%aa/9/

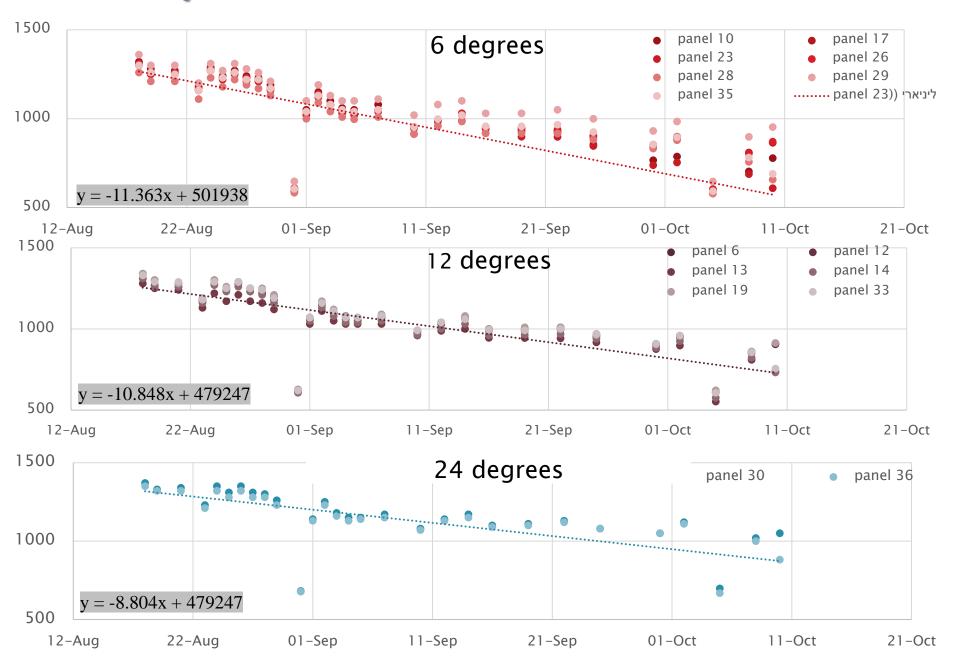
Yield vs. Aesthetics


Constrains - roof inclination

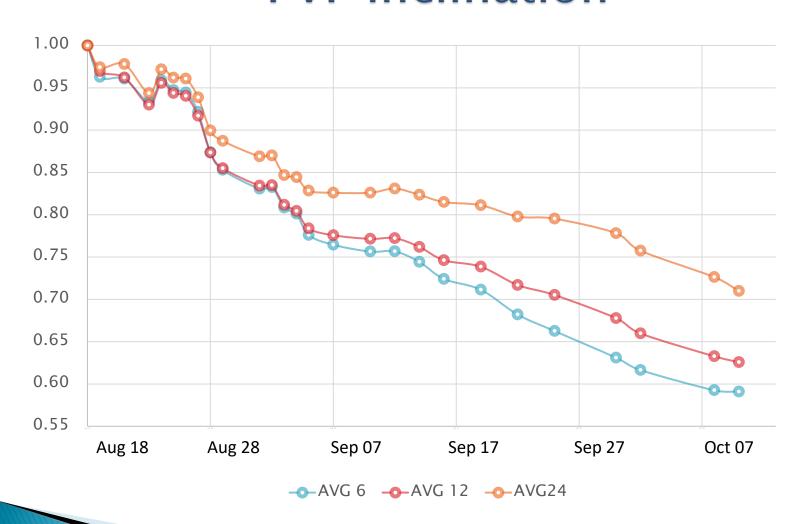
Research Goal

- Homeowner PVP installation recommendations regarding:
 - > Wet cleaning vs. broom cleaning
 - ➤ Dust accumulation rates based on the inclination angle
 - Cleaning rate yield impact
- Investigate the optimal inclination for homeowner installations
- Provide a tool for estimating the system's yield

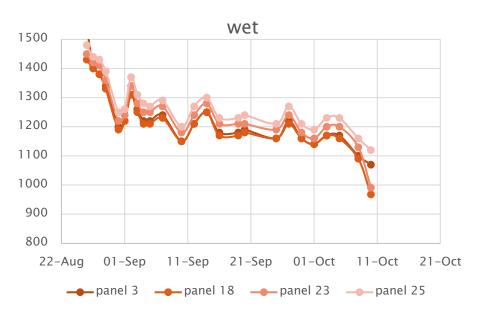
Research Method

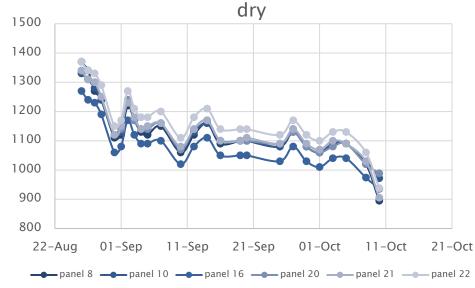

- PVP System description:
 - **❖**13 Panels with a 6° inclination
 - ❖ 12 panels with a 12° inclination
 - *30 panels with a 24° inclination
- We used a clean PVPs as a reference for the daily optimal yield with the exclusion of weather condition effects
- Comparison between the PVP yield based on the PVP inclination
- Comparison between the PVP yield based on the PVP cleaning method
- Produce a yield curve based on image processing that predicts the PVP's yield

Production yield vs. PVP inclination

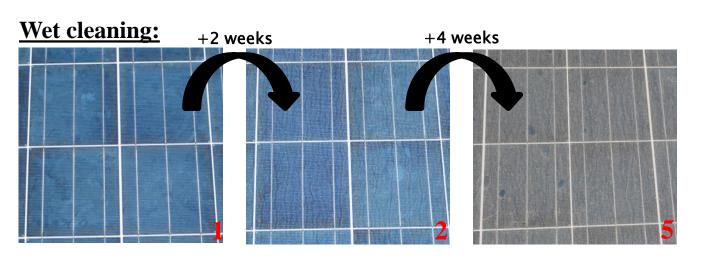

The PVP accumulated yield is significantly more affected by the dust accumulation rates than the inclination angle.

Installation Slope	Normalized Yield – Clean	Normalized Yield – Unclean
24 deg wash	1.12	
24 deg broom	1.00	1.00
12 deg	0.97	0.94
6 deg	0.96	0.85

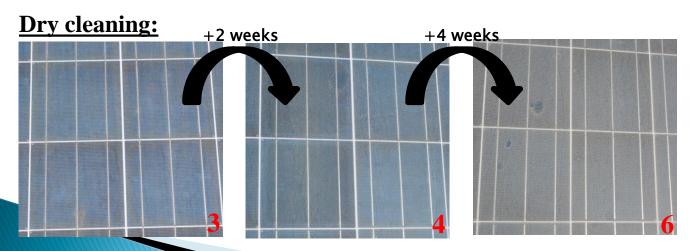

PVP yields of different inclinations



Average yield change influenced by PVP inclination



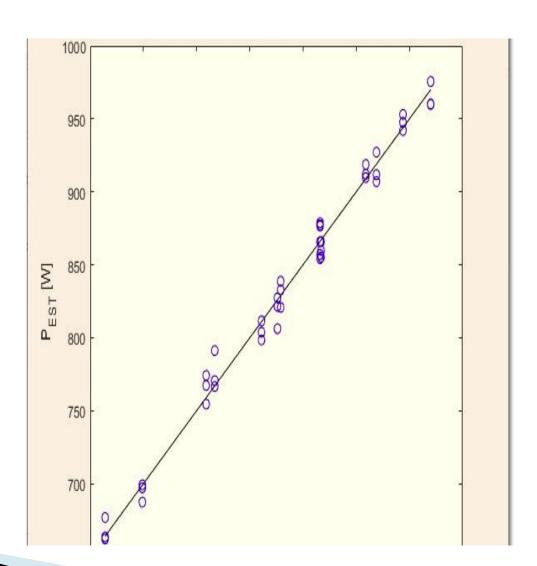
Wet cleaning vs. Dry cleaning

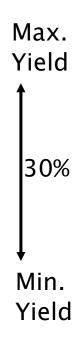


Cleaning Levels

Cleaning Level	Picture No.
Wash	1
Wash after 2 weeks	2
Broom	3
Broom after 2 weeks	4
Wash after 6 weeks	5
Broom after 6 weeks	6
unclean	7

Unclean:




Average Normalized Yield

Cleaning Level	Description	Normalized Production (to wet cleaning)
1	Wash	1 ± 0.01
2	Wash after 2 weeks	0.95 ± 0.01
3	Broom	0.9± 0.01
4	Broom after 2 weeks	0.88± 0.02
5	Wash after 6 weeks	0.86± 0.01
6	Broom after 6 weeks	0.79 ± 0.02
7	unclean	0.66± 0.03

The yield lose rate is similar for both cleaning methods About 14% yield decrease after 6 weeks

Image processing vs. panels yield

Predicting the PVP yield

Optional Interested parties

- Homeowners: when to clean and personal optimal inclination
- Commercial PV panel interface: useful data for users
- Commercial rooftop renters for PVP installation: cost-effective cleaning
- Commercial solar energy producers: addition of a light sensor into the PVP
- Solar panel producers: creating an upgraded cleaning robot with image processing abilities detecting cleaning necessity

Summary

- Is the recommendation for PVP's inclination for homeowners the optimal choice?
- As a homeowner, you could match your cleaning persistency to your installation angle choice for maximum yield.
- Wet cleaning once every 2 weeks will increase PVP yield by 10% compared to dry cleaning.
- Image processing has the potential to become a tool for predicting the panel's yield

Further study

- Test out yield decay for panels with an inclination angle that is higher than 26°.
- Recommendations for productivity loss vs. cleaning cost
- Improve image processing by using photography techniques that reduces weather condition effects.

Thank You

