ALEXANDER SCHNEIDER

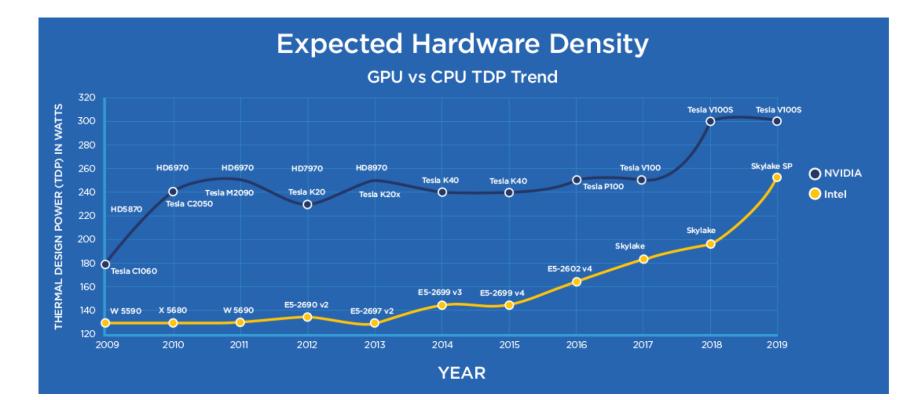
THE POWER OF EXCELLENCE

Direct Liquid Cooling

SEEEI 2021

Liebert.

Nigel Gore Global Director, Liquid Cooling Vertiv


Why Liquid Cooling?

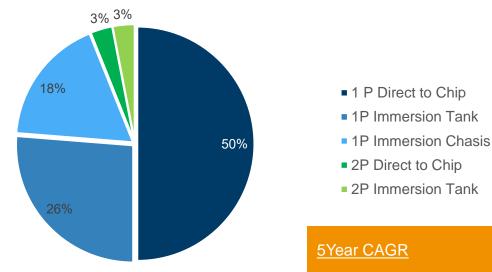
- > Hot Chips
- > Low Latency
- > AI & HPC adoption beyond science labs
- > Opex & Efficiency

Hot Chips & Getting Hotter

Applications Driving Rack Densities to 50KW-100KW per Rack

- > Big Data Analytics using AI
- > Low Latency Processing
- > HPC, Simulation, Scientific

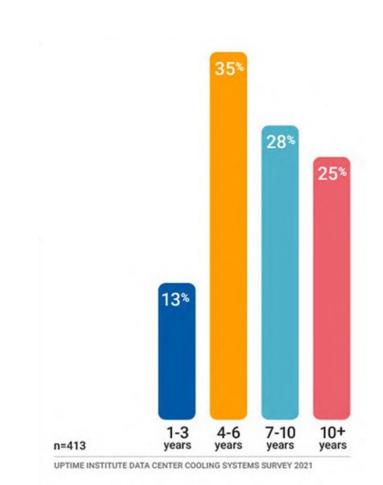
- > Machine Learning
- > Block Chain
- > Gaming


Energy Efficiency

pPUE ranges from 1.02 - 1.05 According to liquid cooling vendors

High Density: What's happening in Liquid Cooling

2019 Liquid Cooling Market - \$83M



Direct to Chip = 16%

Immersion = 28%

Few think air cooling will remain dominant beyond 10 years

Regarding data centers 1 MW or greater, for how long do you think air cooling will remain the dominant approach?

Different Types Of Liquid Cooling

1 Phase Cold Plate (Direct to Chip)

- Least disruptive to OEM supply chain
- Saves 8-15% over air cooling
- Leakage is an issue

2 Phase Cold Plate (Direct to Chip)

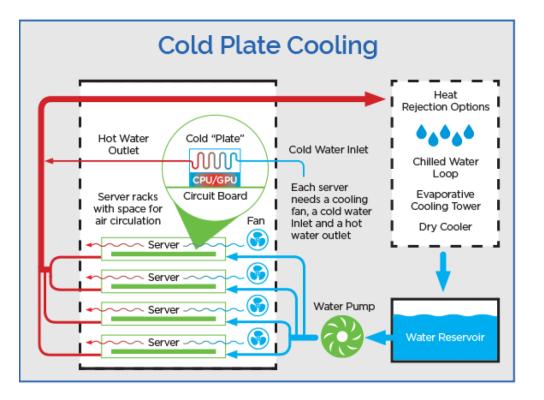
- Saves 10% over 1Phase
- More expensive & complex over 1Phase

1 Phase Immersion Cooling

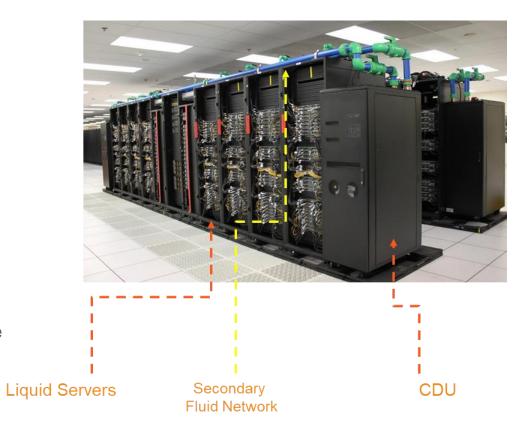
- Non-Evaporating & Environmentally Friendly Fluids
- Saves 5-15 % over Direct to Chip

2 Phase Immersion Cooling

- High fluid costs
- Pump energy savings
- Higher heat flux capacity over 1 Phase
- Complexity in design

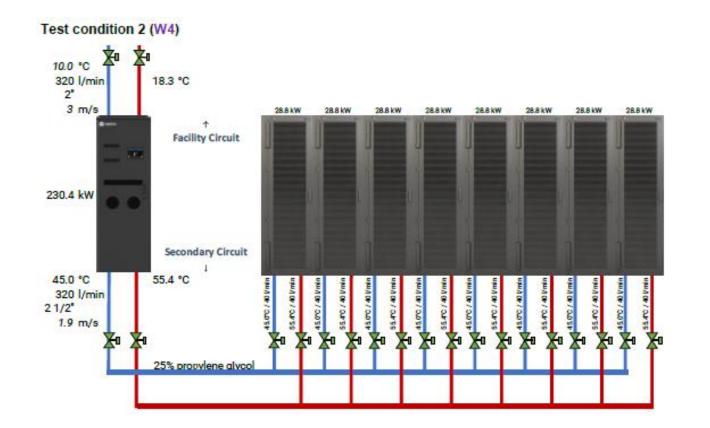


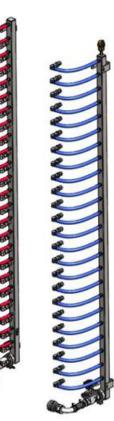
Cold Plate Cooling



Cold Plate (Direct to Chip)

- > Conduction through cold plates
- > Integrated piping.
- > 100-micron micro channels
 - need to eliminate particles/contaminants.
- > 1-Phase: Water with additives, glycol, dielectric liquids
- > 2-Phase: fluid changes phase into a gas as the heat transfer medium
 - Either dielectric or refrigerant liquids can be used as the two-phase liquids
 - Liquids are available with different boiling Liquid temperatures





An example of cold plate implementation

Courtesy: Zuta Core

Liquid Cooling Circuit Layout

Cold Plate Cooling

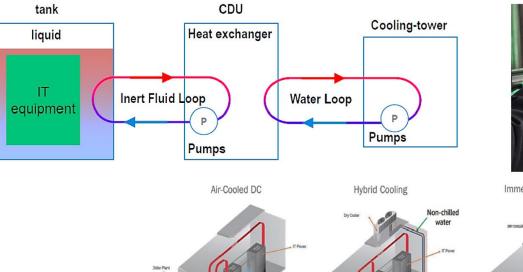
Pros

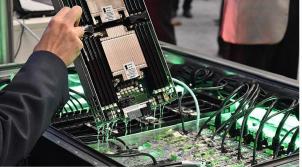
- Energy Efficient high density
- Multiple server vendor adoption

Cons

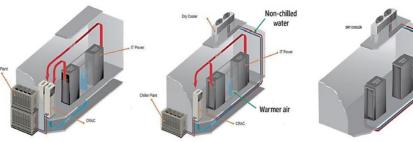
- Complexity: Rack Plumbing, pipes, valves
- Multiple Components: CDU, water connectivity
- Need multi loop water (FCS, TCS)
- Maintenance of water quality / chemistry
 - 100-micron micro channels
- Customer locked to 1 OEM source (wetted material compatibility)
- Complexity to integrate into an existing datacenter
- Leakage risk

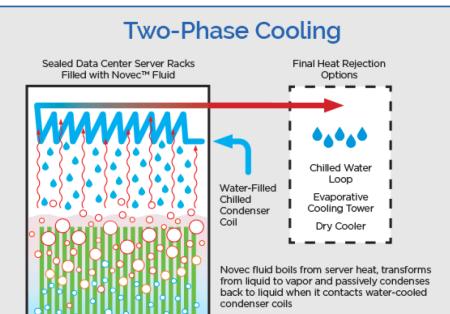
Parameter	FWS (Table 5.3, ASHRAE 2014)	TCS (Table 6.2, ASHRAE 2014)
pН	7 to 9	8.0 to 9.5
Corrosion inhibitor(s)	Required	Required
Biocide		Required
Sulfide	<10 ppm	<1 ppm
Sulfate	<100 ppm	<10 ppm
Chloride	<50 ppm	<5 ppm
Bacteria	<1000 CFUs/mL	<100 CFUs/mL
Total hardness (as CaCO ₃)	<200 ppm	<20 ppm
Conductivity		0.2 to 20 micromho/cm
Total suspended solids		<3 ppm
Residue after evaporation	<500 ppm	<50 ppm
Turbidity	<20 NTU (Nephelometric)	<20 NTU (Nephelometric)


Table 1Water Quality Guidelines for the FWS and TCS


ASHRAE TC909 water cooled servers October 2019

Immersion Cooling

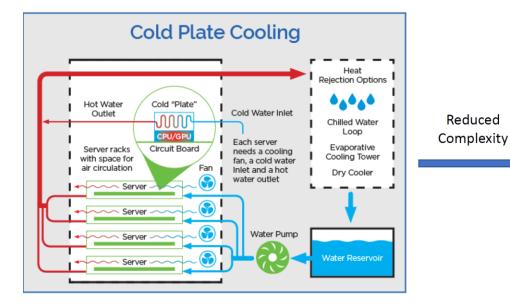

Single Phase Immersion Cooling

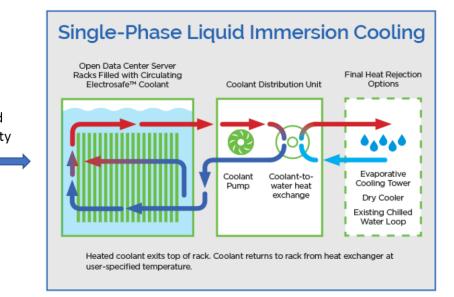

Immersion Cooling

ndurning from sarrorm can be used for building beating Antilent social Equit supply to

[1] Advanced Cooling - A Large Scale Deployment Experience Using Immersion Cooling, OCP summit 2019

2-Phase Immersion Cooling

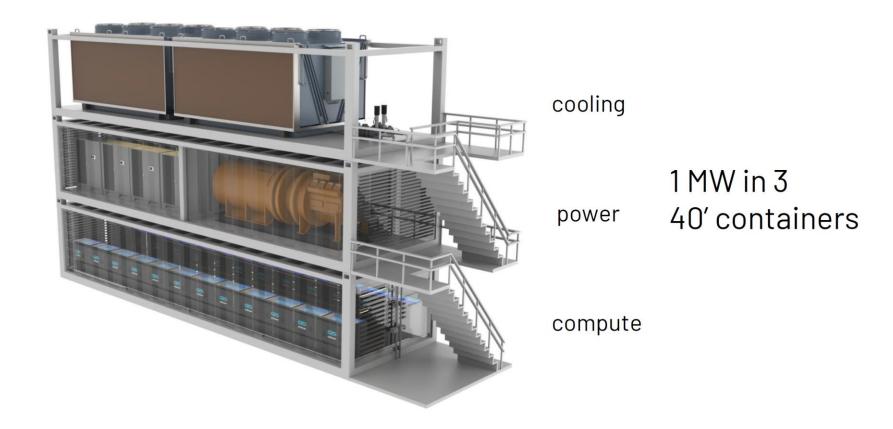

Single Phase Vs. Two-Phase Immersion Cooling



★-Poor ★★★★★-Excellent

https://www.grcooling.com/blog/data-center-cold-wars-part-3-single-phase-immersion-cooling-versus-cold-plate/

SP Liquid Immersion is less complex than Cold Plate


Cold Plate Vs. Immersion Cooling

	Air Cooling	Cold Plate	Immersion Cooling	0 means "Base Line" + means "Better" - means "Worse"
Cooling Capacity	0	+	++	Immersion Cooling is the best.
Hardware Integration	0	+	(+ +)	No fans in immersion Cooling.
Maintenance	0			New mechanical design.
Hardware Reliability	0	-	+	Unaffected by dust , humidity and vibration.
Hardware Performance	0	+	++	Cooling helps improving performance.
Energy Efficiency	0	+	++	No fans, chillers, CRAHs.
Heat Recovery	0	+	++	Easy to be recovered from liquid.
Noise	0	+	++	No fans, no noise.
Corrosion	0	+	**	Isolation from air, no corrosion.
Material Compatibility	0	0	?	Material compatibility needs to be tested.
Initial Capex	0	-		Liquid cost is temporarily high.
Opex	0	+	+ +·	No fans, chillers, CRAHs. Low PUE.
Weight	0	-		Liquid is heavy.

Immersion Cooling protects IT from harsh environment

- High Temp
- Humidity
- Vibration
- Dust

Questions?

yigals@schneider.co.il

052-3615117