

Air Cleanliness in a Hybrid Cardiac Catheterization Laboratory

With major contrubution of:

Ludo VEREECKEN^{1*}, MSc, Kim HAGSTRÖM², DSc, Frédéric VAN HEUVERSWYN¹, MD, Pascal DE WAEGEMAEKER¹, MSc, Pekka KANERVA², PhD, Ismo GRÖNVALL², BSc, Sander RAMIOUL³, BSc

¹Ghent University Hospital, Ghent, Belgium, ²Halton Oy, Helsinki, Finland (³Leuven, Belgium)

Challenges of patient safety in a hybrid OR

- Reduction of patient and staff radiation dose
- Excellent image quality
- Air cleanliness (postoperative infection prevention)
- Thermal comfort for staff (temperature and air velocity)
- Acoustic comfort (noise of ventilation systems)

Air cleanliness; at rest and in operation conditions

- Two basic requirements
 - No infection due to pollution during the intervention
 - No infection due to cross contamination
- At Rest conditions*
 - General room cleanliness level ISO 5 (EN ISO 14644)
 - Recovery Time (100:1) < 15 minutes
- In Operation conditions*
 - < 10 CFU /m³ (CFU, colony forming unit active sampling)

^{*} CEN TC156 WG18, Hospital Ventilation Working Draft

Assumptions of LAF (golden standard)

- Laminar Air flow
 - Unidirectional low turbulence (Charnley's principle*)
 - No interference of the air currents
 - Full side curtains
 - Only protection under the LAF field
- Are these assumptions fulfilled in state-of-the art hybrid OR?

^{*} Br J Surg.1964 Mar;51:202-5

Assumptions of Laminat Air Flow not fulfilled in hybrid OR

Alternative option; Dilution principle, Controlled dillution flow pattern Flexible and Ventilation Efficient use of adjusts to operating space needs operating conditions **Putting people** first **Silent operational Optimal thermal** environment comfort

Nya Karolinska – Independent On-Site Validation

Conducted as a Simulated Operation (after At Rest qualification) at the finished Operation room with Vita OR Space On-Site by Nya Karolinska Hospital and MyAir Qualification company without any involvement by manufacturer

Results:

- Average 1,5 CFU/m³
- Maximum individual reading 4 CFU/m³

The full presentation may be downloaded from below link:

http://www.r3nordic.org/_project/_private/ userAssets/dfeb9598fbfb97cc6bbcc0aff2 c785d6/myair 2016 nks.pdf

Materials and Methods TAVI

- Aortic valve stenosis = most common cardiac valve lesion
- TAVI = transcatheter aortic valve implantation
- Alternative for open surgical aortic valve replacement in selected patients with high operative risk

Materials and methods TAVI

- Procedure requires optimal fluoroscopic image quality in a perfectly sterile surgical environment
- Catheter is advanced over the wire from the femoral artery through the calcified aortic valve
- After balloon dilatation of the stenotic valve the new valve is placed inside the native valve
- Positioning of the valve requires rapid cardiac pacing to temporarily stop the pump function of the heart

Materials and methods

- Computational Fluid
 Dynamics Simulation using
 ANSYS* CFD software
 - Steady State analysis with SST turbulence model (shear stress transport)
 - CFUs modeled as solid particles injected from staffs face and feet areas
 - Computational models had approximately 6 million elements

^{*} Ansys, Inc. Canonsburg, PA, USA

Comparison of Laminar flow and controlled dillution system

- Green rectangle LAF 1,8 x 2,4 m
- Blue Ring: air distribution elements for controlled dillution
- Critical zones Red Areas
 - Wound Area
 - Instrument table 1 and 2
- The Laminar Air Flow corresponding to the same air flow (about 5000 m³/h)

With surface as assumed and obstacles, air distribution is mixing in practice

Results LAF 1,8 x 2,4 m²

- Field 1,8x2,4: no laminar flow in plane 2 (even under the LAF-field) due to C-arm
- Required surface to cover all critical zones = $4.2 \times 5.6 \text{ m}^2 \rightarrow \text{airflow } 28.000 \text{ m}^3/\text{h}$: not feasible

Results LAF 1,8 x 2,4 m²

- Microbial Cleanliness 0,9 m plane
- No control of flow outside of the LAF-field
- No uniformity

We can control by increasing average air velocity and abandoing "even air distribution" assumption

Results Controlled dillution system

- Microbial Cleanliness 0,9 m plane
- Much more uniform conditions

All critical zones are covered

Results for controlled dillution system

- Microbial Cleanliness plane 1 OR table
- Good air quality next to the table, even under the C-arm

Results controlled dillution

- Microbial Cleanliness critical areas
- Fulfills the requirements of < 10 CFU/m³

CFU	Controlled dillution	Laminar
OR Table	<1	<1
Instr Table 1	<1	12
Instr Table 2	2	19

Results controlled dillution

- Average recovery time by design 7 minutes (< 15 minutes)
- Age of Air illustration shows a good flushing of all critical areas (Plane 3 Instrument tables)

Results controlled dillution

- Thermal environment
- No direct draft of supply air to the operating staff (max 0,5 m/s)
- Air temperature more equalized due to dilution before entering the occupied zone (2 °C higher than supply air (Plane 2 – doctors))

Discussion

- Laminar flow and controlled dillution give good air quality in the wound area
- Only controlled dillution gives good air quality outside the wound area
- Controlled dillution is less energy consuming than LAF 3x3 m (50%)
- Controlled dillution gives better thermal environment due to dilution

Microbial Cleanness, OR Table (Plane 1) (Laminar Flow 2,4mx1,8m)

Conclusions

- 1. The ventilation specifications for OR's must modify and take into account modern medical progress
- 2. New technologies, especially digitalization and drive for minimum intervention require new approaches to OR ventilation, to ensure:
 - a. stable airflow through critical areas
 - b. leaving space in ceiling infrastructure for medical devices
- 3. CFD modelling and other contemporary technologies are excellent tools for decision makers in new, changing reality