

Data Canter CFD Simulations For Optimal Design ?

CAS Ltd. - Computerized Analysis & Simulation Dr. Eldad Levy <u>cas@cas.co.il</u> +972-04-8580024

Electricity & Energy 2024

Eilat - November 2024

Who We Are

- Innovative CA service provider in the field of mechanical, thermal, dynamical and CFD systems.
- Established in 1995, Today we are 12 workers.
- Specialization in providing a complete range of engineering consulting, starting from the first conceptual design, and up to the final testing stages, using cutting edge computerized tools such as, FE (Finite Elements) and CFD (Computerized Fluid Dynamic) software.
- Engineering Consulting, Conceptual Design and Simulation:
 - Mechanical
 - Dynamical and rigid body
 - CFD design aspects
 - Optimization
 - Thermal
 - Full system modeling
 - Multi discipliner
- Environmental and Verification Testing
- Marketing & Supporting Simulation and CAD Software

Introduction

- The AI booming, increases dramatically the need for computing and storage needs, due to it the Demand for Data Centers.
- Data center today face new challenges:
 - Large hot spot/ power need to be cooled
 - Due to the large amount of needed cooling energy, the cooling must be more efficient.
- It is not sufficient anymore to cool out the total heat, the designer must take in to account the hot spot, as well !
- The traditional data centers includes racks with 3-6 KW, the new racks can dissipate up to 30 KW per rack and more.

In the US, which the report said is home to 33 percent of the world's data centers, consumption is expected to rise from 200TWh in 2022 to 260TWh in 2026, some six percent of all power use across the country.

In Ireland, by 2026, data centers in line account for 32 percent of all ower consumption due to a high number of new builds planned. This ompares to 17 percent in 2022. As in reported by DCD, calls to limit the ineland because of their energy use lieland because of their energy use in the line by the list government lieland by by the list government

Way CFD ?

By CFD we constructs a computer model of the System structure and areaand uses the technique of Computational Fluid Dynamics (CFD) to calculate the airflow pattern and pressure/temperature distributions.

- Designing efficient cooling
- Examining "what if" scenarios
- Examining failure scenarios
- Evaluating options for positioning new equipment
- Making cost-effective investments in cooling-related hardware

Practical Data Center Solutions ?

General Full Data Center System Chillier/Cooling Tower – CRAC - Racks

Chillier/Cooling Tower

(Generators/ chiller)

CRAC

Racks

Common Rack Airflow Distribution

• Limit to LD system due to tile limits and raised floor limits

Hot/Cold Aisle Containment System Concept

Tile Perforations

CRAC Cooling System With Chimney

"POD" – Hot and Cold Aisle System – For HD Rack With "in row"

Example 1 - Roof With Cooling Towers Roof Model Drawing Description

Example 1 – Roof CFD Model

Example 1 – Simulation Results - Velocity Distribution Horizontal Cross Section Through Center of Towers

V=10ms from [+x, -y]

In each tower the percent of returning air from the total flow that enters the tower is given in black

Example 1 – Simulation Results - Air Flow At Outlets Of Tower – Back Flow Percentage

Simulations Input/Output

• <u>Input</u>

- Geometrical model (structure, rise floor/roof)
- Tile opening
- Rack/CRAC performances
- Powers

• <u>Output</u>

- Temperature distribution
- Air velocity distribution
- Pressure distribution
- Tile air flow/pressure droop
- Rack Characteristics
 - Air flow
 - Pressure drop
 - Temperature differences
- CRAC/Inrow Characteristics
 - Air flow
 - Pressure drop
 - Temperature differences

Example 2 - Data Center

Room Layout - 229 Racks With Powers 8/19KW- Total = 2624 KW

Example 2 - Data Center Case With CRAC Failure

Example 2 - Data Center Room Side Cross Section View

Example 2 - Data Center Thermal Model General Isometric View

Example 2 - Data Center Racks – Thermal Model Description

	Jeen		
	Ņ		
	3		
	EFFE		
l bubb			
11.1.1			
- Laberton			
1.11			
	M		
, e	0		
	•		
	•		
	•		
	•		
,=	•		
	•		

General	Flow Configuration	Air Flow and Heat Load
ucheidi	Flow Configuration	Air Flow and Heat Load
Turn	ed off / Failed	
Name		rack
Name	plate	Rack
Color		
- Dimensi	ions	
Width	(<u>cm</u>)	75
Height	: (<u>cm</u>)	230
Depth	(<u>cm</u>)	120

eneral Flow Configuration		Air Flow and Heat Load			
Servers	s (from botte	om to top)—			
	Туре	Height (cm)	Heat Load (kW)	T Rise (°C)	Flow Rate (ft^3/min)
Whole	e Rack	198.12	19	12.6	2644.11

-]_

Rack

N

Example 2 - Data Center CRAC – Thermal Model Description

CRAC				
General Air Flow Th	ermal Model Inlets and Outlets			
Turned off / Failed				
Name	crac			
Nameplate	CRAC			
Color				
Width (<u>cm</u>)	255			
Height (<u>cm</u>)	257			
Depth (<u>cm</u>)	89			
Duct				
Height (<u>cm</u>)	314 🗹 Auto			
General Air Flow	Thermal Model Inlets and Outlets			
Flow Rat	e (ft [^] 3/min) 23847.4			
	· · · · · · · · · · · · · · · · · · ·			
Alpha (<u>de</u>	g) <u>2</u>			
General Air Flov	W Thermal Model Inlets and Outlets			
🕘 Constant Su	pply Temperature			
Tsupply (°C)				

Example 2 - Data Center – Simulation Results Temperature Distribution – Horizontal Cross Section

Example 2 - **Data Center – Simulation Results** Air Flow Distribution Horizontal Cross Section

The legend value reduced from the max. of 9.5m/sec

Example 2 - Data Center – Simulation Results Temperature Distribution Vertical Cross Section Through CRAC

Example 2 - Data Center – Simulation Results Air Flow Velocity Distribution Cross Section Through CRAC & HOT and Cold Aisle

Example 2 - Data Center – Simulation Results Temperature Distribution – Case With CRAC Failure Horizontal Cross Section

Example 2 - Data Center – Simulation Results Air flow Distribution – Case With CRAC Failure Horizontal Cross Section

The legend value reduced from the max. of 9m/sec

Thanks Questions ?

